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The purpose of this experiment was to test a computational model of reinforcement learning with and without
fictive prediction error (FPE) signals to investigate how counterfactual consequences contribute to acquired
representations of action-specific expected value, and to determine the functional neuroanatomy and
neuromodulator systems that are involved. 80 male participants underwent dietary depletion of either
tryptophan or tyrosine/phenylalanine to manipulate serotonin (5HT) and dopamine (DA), respectively. They
completed 80 rounds (240 trials) of a strategic sequential investment task that required accepting interim losses
in order to access a lucrative state and maximize long-term gains, while being scanned. We extended the
standard Q-learning model by incorporating both counterfactual gains and losses into separate error signals.
The FPEmodel explained the participants' data significantly better than a model that did not include counterfac-
tual learning signals. Expected value from the FPEmodel was significantly correlatedwith BOLD signal change in
the ventromedial prefrontal cortex (vmPFC) and posterior orbitofrontal cortex (OFC), whereas expected value
from the standardmodel did not predict changes in neural activity. The depletion procedure revealed significant-
ly different neural responses to expected value in the vmPFC, caudate, and dopaminergicmidbrain in the vicinity
of the substantia nigra (SN). Differences in neural activity were not evident in the standard Q-learning computa-
tional model. These findings demonstrate that FPE signals are an important component of valuation for decision
making, and that the neural representation of expected value incorporates cortical and subcortical structures via
interactions among serotonergic and dopaminergic modulator systems.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Computational models of reward-based learning assert that
learning occurs when expectancies are violated (Sutton and Barto,
1981). Representations of expected value mediate decision making
and are shaped by experience, as in Q-learning (Watkins and Dayan,
1992). It is typically the product of both observed probability and mag-
nitude of gains and losses (Knutson et al., 2005), and is incrementally
updated by a reward prediction error (PE), the difference between
expected and experienced consequences. Counterfactual consequences,
the gains and losses associated with alternative actions that were not
executed, affect subsequent choices in a variety of ways (Boorman
et al., 2009, 2013; Buchel et al., 2011; Coricelli et al., 2005; Li and Daw,
2011; Lohrenz et al., 2007; Nicolle et al., 2010, 2011), presumably by
roscience, BldgW34, University
20246Hamburg, Germany. Fax:
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influencing the computation and representation of expected value
via a fictive error signal processed in the ventral and dorsal striatum
(Montague et al., 2006; Lohrenz et al., 2007).

A cortical–subcortical system, including the dorsal anterior cingulate
cortex (dACC), orbitofrontal cortex (OFC) and ventromedial prefrontal
cortex (vmPFC), as well as the striatum and mid-brain structures, is
implicated in reward-based learning from expected values and reward
PE (Doya, 2008; O'Doherty, 2004). Importantly, the vmPFC activates
acquired representations of expected value that correspond to the
selected action or stimulus during choice (Gläscher et al., 2009;
Jocham et al., 2011), and reward PEs modulate activity in the ventral
and dorsal striatum (O'Doherty, 2004; Haruno & Kawato, 2006;
Schonberg et al., 2010). Moreover, both dopamine (DA) and serotonin
(5HT) are important for the neural computations of this reward-based
learning system (Jocham et al., 2011; Montague et al., 2006;
Pessiglione et al., 2006; Schonberg et al., 2010; Seymour et al., 2012;
Tanaka et al., 2007), although they are thought to play distinct, yet
cooperative or even conflicting roles (Boureau and Dayan, 2010; Cools
et al., 2011; Rogers, 2011).
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Numerous studies have examined the effects of fictive error signals
on subsequent choices, as well as the shared neural substrates for pro-
cessing reward PE and fictive error signals using a variety of paradigms
(Sommer et al., 2009). But less attention has been given to elucidating
how fictive error signals shape the expected values thatmediate choice,
especially during strategic sequential choices for which optimal perfor-
mance requires accepting interim losses in order to maximize long-
term gains. In addition, the roles of DA and 5HT in acquiring and
representing expected value from counterfactual learning signals have
not been examined. For these reasons, the goal of this experiment was
to investigate the functional–neuroanatomical and neuromodulatory
systems involved in representing expected value during reward-based
learningwith valuation processing that incorporates a fictive prediction
error (FPE) signal. This experiment was designed to address three is-
sues: 1) whether or not FPE signals improve computations of expected
value during intertemporal choice beyond the contribution from stan-
dard reward PE signals, 2) whether or not representations of expected
value that incorporate FPE signals are supported by activation of the
vmPFC and/or subcortical regions, and 3) to localize the involvement
of DA and 5HT in processing and representing expected value computed
with FPE signals.

A counterfactual loss (i.e., an amount of reward that was not
acquired) occurs on winning trials as a missed opportunity for which
an alternative actionwould have returned a greater reward, and is asso-
ciated with subjectively experienced regret (Camille et al., 2004;
Coricelli et al., 2005). Counterfactual losses promote choice repetition
(Boorman et al., 2013; Nicolle et al., 2010, 2011) as well as choices
that spontaneously deviate from an established preference (Boorman
et al., 2009). They can be used to optimize investment magnitude
(Lohrenz et al., 2007) and choice strategy (Li and Daw, 2011), and
they lead to increased subsequent risk taking (Brassen et al., 2012;
Buchel et al., 2011; Coricelli et al., 2005). According to Lohrenz et al.
(2007), a counterfactual loss, which may only occur on winning trials,
can be used as a fictive error signal (referred to as f+ in their study).
To investigate whether the fictive error signal stemming from a
counterfactual loss contributes to valuation processing we developed
a computational model that utilizes the fictive error signal to produce
an FPE. This FPE differs from the fictive error signal studied by Lohrenz
et al. in that it is computed using the temporal difference between
expected values and counterfactual consequences, rather than simply
the difference between an obtained and unobtained outcome. We use
FPE+ to refer to the FPE signal on a winning trial because it uses the
fictive error signal associated with a counterfactual loss (referred to as
f+ by Lohrenz and colleagues), rather than the counterfactual outcome
itself, to compute the prediction error.

A counterfactual gain (i.e., an amount of punishment that was not
suffered) occurs on losing trials as a reduced cost for which an alterna-
tive action would have cost more, and is associated with subjectively
experienced relief (Coricelli et al., 2005; Nicolle et al., 2010). We use
FPE− to refer to the FPE signal on a losing trial, which is the counterfac-
tual gain due to this reduced cost. Counterfactual gains reportedly
lead to differential changes in subsequent choices and cognitive perfor-
mance aspects (i.e., speeded response times) of decision making
(Fujiwara et al., 2009; Lohrenz et al., 2007), although the precise nature
of these effects is not well elucidated in the literature. For example,
Lohrenz et al. (2007) included the fictive error stemming from the
counterfactual gain (referred to as f− in their study) in their analysis
of fictive learning signals, but found that it did not significantly predict
subsequent choice behavior. Their study showed that fictive error
signals from counterfactual gains and losses have dissociable effects
on learning and choice behavior.

Previous studies of counterfactual learning signals have applied
variations of theQ-learning (Watkins andDayan, 1992)model to choice
behavior (Chiu et al., 2008; Li and Daw, 2011; Lohrenz et al., 2007),
although none have directly incorporated counterfactual consequences
into a TD-like error term, an FPE, for valuation. Whereas Lohrenz et al.,
aswell as Chiu et al. (2008), found that a fictive error signal contributed
to a change in behavior, they did not examine if an FPE+ or FPE−
contributes to valuation in a modified Q-learning model of choice be-
havior. As suggested by Lohrenz and colleagues, situating the fictive
error signal (f+ and f−) within a machine learning framework, such
as Q-learning, could provide additional insight into the contribution of
counterfactual consequences to choice behavior. Li and Daw (2011) ex-
amined the effects of counterfactual consequences on learning, but they
modeled the counterfactual prediction error with a Rescorla–Wagner
update rule, which by definition does not take into account future antic-
ipated rewards as does a TD prediction error. They found that their data
wasmore consistentwith a policy updatingmechanism, as opposed to a
system that updates action-specific expected valueswith counterfactual
consequences. Taken together, these studies showed that choice behav-
ior is responsive to counterfactual consequences, but it remains unclear
if the various effects of counterfactual consequences on subsequent
choices are mediated by a direct effect on action-specific valuation
processing.

To investigate the effects of both counterfactual losses and gains on
valuation and choice behavior, we designed a strategic sequential in-
vestment task (SSIT) that overtly presented the counterfactual outcome
on each trial, included action–contingent state transition rules, and
modified the Q-learning algorithm to incorporate winning and losing
FPEs in a two-stage update process. The computational model incorpo-
rated the counterfactual outcome by computing a fictive error signal
that is subsequently used to compute an FPE, which then updates
action-state pair specific expected values. This allowed observation of
which FPE signals (either FPE+ or FPE− , or both) contributed to the
action-specific valuation.We expected that incorporating counterfactu-
al learning signals into Q-learning with FPE signals would facilitate
model performance, and that expected value signals would modulate
the vmPFC during choice. In addition, we aimed to further characterize
the functional neuroanatomy representing expected value by localizing
the involvement of dopaminergic and serotonergic neuromodulators
via an acute amino acid dietary depletion protocol for both DA and
5HT, respectively.

Method

Participants

80 healthy males aged 18–30 years (mean = 24.3, SD = 3.4) par-
ticipated in the experiment. Participants were screened for mental
health disorders during recruitment and provided informed consent.
They completed a set of psychological tasks and questionnaires includ-
ing assessments of risk and loss aversion (Sokol-Hessner et al., 2009),
personality traits, and spatial intelligence, over two days in addition to
adhering to a restricted diet (details below) for 24 h prior to the exper-
imental session. All 80 participants complied with the diet (see results
of the depletion procedure below) and completed the decision making
task while being scanned. None were excluded from any analyses. All
protocols were approved by the ethics committee of themedical associ-
ation of Hamburg and carried out in accordance with the Declaration of
Helsinki.

Dietary depletion procedure

Participants were randomly assigned in a double-blind placebo-
controlled protocol to one of three groups: placebo (n = 30; P), DA-
depletion (n = 25; D−), and 5HT-depletion (n = 25; S−); each
receiving a different dietary depletion treatment designed to reduce or
preclude the metabolism of essential amino acids into various neuro-
transmitters (Young et al., 1985). All participants received a low protein
diet (12 g) provided by the University Medical Center canteen the day
before scanning, and fasted overnight (including food, alcohol and
caffeine). In the morning of the test day, a baseline blood sample was
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drawn from each participant and then they were given a drink
containing an array of amino acids. Whereas the mixture for the P
group contained the full complement of amino acids, the mixture for
the D− group lacked L-tyrosine and L-phenylalanine, and the mixture
for the S− group lacked L-tryptophan. As such, metabolic precursors
for DA were depleted in the D− group, and the metabolic precursor
for 5HT was depleted in the S− group. Following consumption of the
beverage, participants had a delay period of 4 h during which they
could read or watch DVD videos, and also completed the training
exercises. A second blood draw was taken just prior to scanning.

Amino acid mixtures and biochemical measures

Amino acid mixtures were prepared by Meta X Institute for
Dietetics (Freiburg, Germany). Three different powdered mixtures
were prepared corresponding to the three experimental groups.
The powder was stirred into a glass of water (approximately 250 mL)
yielding a citrus flavored drink.

The mixture for the P group contained: L-alanine (4.1 g), L-arginine
(3.7 g), L-aspartic (9.8 g), L-cystine (2.0 g), glycine (2.4 g), L-histidine
(2.4 g), L-isoleucine (6.1 g), L-leucine (10.2 g), L-lysine (7.6 g),
L-methionine (3.0 g), L-phenylalanine (4.3 g), L-proline (9.3 g), L-serine
(5.3 g), L-threonine (4.3 g), L-tryptophan (3.0 g), L-tyrosine (5.3 g),
and L-valine (6.8 g).

Themixture for the D- group contained: L-alanine (4.6 g), L-arginine
(4.1 g), L-aspartic (10.8 g), L-cystine (2.2 g), glycine (2.7 g), L-histidine
(2.7 g), L-isoleucine (6.7 g), L-leucine (11.3 g), L-lysine (8.4 g),
L-methionine (3.4 g), L-phenylalanine (0.0 g), L-proline (0.3 g), L-serine
(5.8 g), L-threonine (4.8 g), L-tryptophan (3.4 g), L-tyrosine (0.0 g), and
L-valine (7.5 g).

Themixture for the S− group contained: L-alanine (4.3 g), L-arginine
(3.9 g), L-aspartic (10.1 g), L-cystine (2.1 g), glycine (2.5 g), L-histidine
(2.5 g), L-isoleucine (6.3 g), L-leucine (10.5 g), L-lysine (7.8 g),
L-methionine (3.1 g), L-phenylalanine (4.5 g), L-proline (9.6 g), L-serine
(5.4 g), L-threonine (4.5 g), L-tryptophan (0.0 g), L-tyrosine (5.4 g), and
L-valine (7.0 g).

Blood samples were analyzed for plasma free amino acid concentra-
tions. EDTA-blood was collected (10 mL) before ingestion of the amino
acid drink and again 5.5 h later to determine the ratio of either trypto-
phan or tyrosine and phenylalanine amino acids to five large neutral
amino acids (LNAA). Blood samples were centrifuged (10 min;
3000 g), frozen in liquid nitrogen and stored at −80 °C. Each plasma
sample (100 μL) was deproteinized with 5-sulphosalicylic acid
(10%, w/v) and centrifuged (10 min; 3000 g) after neutralization and
adding of the internal standard norleucine. The amino acids in the
resulting supernatant were determined using an amino acid analyzer
according to standard procedures (Biochrom 30, Laborservice Onken,
Gruendau, Germany). A cation exchange chromatography system is
coupled with a detection system using post-column derivatization
with o-phthaldialdehyde and fluorescent detection (ex: 340 nm; em:
450 nm).

Strategic sequential investment task

The strategic sequential investment task (SSIT) was designed to
investigate the potential use of counterfactual consequences as FPE
signals during value learning. On each trial, participants decide how
much money to invest in a financial market, and then learn about the
factual and counterfactual outcomes in succession. The task design in-
cluded a complex state-space (Fig. 1) comprised of four possible paths
(a sequence of three states), each with a different chance of gaining or
losing money in the long-run. Each individual state was uniquely iden-
tifiable by a different neutral visual backgroundpattern. As illustrated in
Fig. 1, the paths leading to states 4 and 6 are associated with long-term
gains, with state 4 being the most lucrative.
Participants completed 80 rounds of the SSIT where each round
started at state 1, consisted of three decisions and ended in state 4, 5,
6, or 7 (Fig. 1). On each trial, participants choose an amount of money
to invest (0, 1, 2 or 3 Euros). Their path through the virtualmazewasde-
termined by the magnitude of their investments, rather than the out-
come of the trial. Risk averse investments (0–1 Euro; RA) descended
throughout themaze leading to a non-lucrative, losing state (e.g., states
5& 7). Risk seeking investments (2–3 Euro; RS) elevated throughout the
maze leading to a lucrative, winning state (e.g., states 4 & 6). In order to
identify and follow the optimally lucrative path, participantsmustmake
strategic decisions that accept interim losses (at states 1 and 2, for
example) in order to gain access to lucrative state 4. As such, decision
making based on expected value must take into account anticipated
future rewards, rather than only feedback for the current state-action
pair.

The task was presented to participants in the scanner as an event-
related design (Fig. 1, bottom) with 5 stimulus events during each
trial. Each trial started with the presentation of a state (indicated
by a unique visual background cue) and a randomly initialized
response meter to indicate the amount of money to invest on the
current trial (i.e., choice phase). Participants could move the indica-
tor bar on the response meter using an MR-compatible mouse
according to the value of their desired investment (0–3 Euro).
This stimulus remained onscreen for 3000 ms (fixed duration).
This was followed by a brief (500 ms, fixed duration) anticipation
phase, and then factual (i.e., outcome phase) and counterfactual
(i.e., missed outcome phase) outcomes were presented in succes-
sion. The outcome presentation (3000–5000 ms, jittered) informed
participants of the amount of money that had been gained or lost
on that trial, indicated by a stack of coins. The counterfactual out-
come presentation (3000–5000 ms, jittered) informed participants
of a greater amount of money that could have been won or lost if
the maximum investment, i.e. 3 Euros, was selected. This was
symbolized by a second stack of coins that highlighted the difference
between factual and counterfactual outcomes. Previously, Lohrenz
et al. employed a similar task design but did not explicitly present
the counterfactual outcome on each trial. Instead, they computed a
fictive error signal (f+ or f−) implicitly, based on the difference be-
tween factual obtained reward and what would have been obtained
if a maximal investment had been selected on that trial.

Each trial concluded with the presentation of a state transition
stimulus event (2700 ms, fixed duration) that highlighted whichev-
er of two possible subsequent states had been selected based on the
magnitude of the investment (i.e., transition phase). The two possi-
ble state transitions were shown simultaneously at the lower and
upper portions of the display in a random fashion. This transition
event was substituted for by an additional feedback stimulus after
the third trial of each round (the task always returned to state 1 as
the first trial of each round), which indicated the total amount of
money gained or lost over the previous three decisions (i.e., multi-
trial feedback phase).

Two short rounds of practice trials familiarized participants to
the task stimuli and the mouse controls for indicating their choice,
as well as for making ratings of win expectancies, but did not reveal
information about the actual win probabilities or expected values
that defined each state and path from the task. The first round of
practice trials was self-paced. The second round of practice trials
was presented at the same speed as the task would be presented
during fMRI scanning. The practice trials did not reveal any informa-
tion about the contingencies that were active during the experiment.
The task was presented to participants in 10 blocks of 3 trials during
each of 8 scanning runs (240 total trials). In between each scanning
run participants completed visual analog ratings (1–5; anchored
at ‘never’ and ‘very often’) of the win expectancy associated with
each individual state (i.e., “how frequently do you win in this
state?”).



Fig. 1. Task design and presentation. Strategic sequential investment task. The task is based on a complex state space whose underlying structure is not known to the participants
(upper part of the figure). The seven states differ with respect to their winning and losing probabilities as well as the mean amount of monetary gains and losses. In each state the
underlying outcome is generated by a bi-Gaussian distribution (p as the win probability and 1–p as the loss probability). The two numbers on the top in the square next to
each state are the mean of the win Gaussian and the loss Gaussian and the expected value (EV) is the mean outcome of the specific state. For example in state 1 (red),
EV = 0.4 × 20 + 0.6 × (−10). Stateswhere the state characteristics are indicated in green squares have positive EVs, i.e. states 1, 4, and 6,whereas stateswith red squares have negative
EVs, i.e. 2, 3, 5, and 7. Each state is associated with a particular neutral background (see lower part of the figure for an example). By this background color, participants can learn over the
240 trials of the experiment to associate each statewith anEV. In each trial (lower part of thefigure), participants decide howmuch to invest, i.e. 0, 1, 2, or 3 Euros in the stockmarket of the
current state (‘choice’). The amount of the investment is indicated in the bar right to themarket chart where the starting amount at the beginning of the choice phase, i.e. 0, 1, 2, or 3 Euros,
was random. During the brief anticipation phase participants observe how themarket develops. Then they learn in the outcome phase howmuch theywon or lost, which is the product of
their investment and themarket change. The outcomewas presented innumbers but also visualized by a positive or negative stack of coins. In the followingfictive outcomephase, subjects
learned howmuch they would havewon or lost when theywould have invested themaximumof 3 Euros. This phase was included to foster counterfactual comparisons which result in a
fictive prediction error, i.e. the difference between the factual and the counterfactual outcome. Participants started each round in state 1 andwere then transferred through the state space
following a transition rule thatwas unknown for them. Inparticular, risk averse (RA) investments of 0 or 1 Euro led to different states than risk seeking (RS) investments. At the end of each
trial, the two possible next states were shown to the participant in the transition phase in random vertical order. Then subjects were transferred to the state according to their decision.
After 3 trials, the round ended and subjects were informed about the total win or loss of this round, and then transferred back to state 1.
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Computational reinforcement Q-learning model

Q-learning is a model-free reinforcement learning technique that
learns an action–value function according to the temporal difference
(TD) between obtained and expected rewards (Watkins and Dayan,
1992). However, the TD signal only involves factual consequences
about the selected action. In order to assess a counterfactual learning
process, we modified the standard Q-learning model by incorporating
counterfactual consequences into valuation computations in a two-
stage update process.

The SSIT consists of seven states (s1 to s7), eachwith four possible ac-
tions (a1, a2, a3 and a4). The goal of both the standard Q-learningmodel
and the FPE model is to learn a state-action value function Q(st,at) at
each trial t, which is defined to be the expected discounted sumof future
payoffs obtained by taking action a from state s and following an
optimal policy thereafter.

For both the standardmodel and the computational model modified
with FPEs, Q values were initialized to 0 and then updated on each trial
with a two-stage update process. In this first stage,Q values are updated
with the factual outcome rt according to a standard temporal difference
(TD) learning rule as shown below:

Q st ; atð Þ ¼ Q st ; atð Þ þ α rt þ γmaxatþ1
Q stþ1; atþ1
� �

−Q st ; atð Þ
h i
where α is a free learning rate parameter that determines to what
extent the newly acquired information will override the old informa-
tion. The discount parameter γ weighs the extent to which anticipated
reward from next state st + 1 is taken into account when computing
the TD error term, andwas fixed to γ = 0.9. This is a standard TD learn-
ing rule and the TD error term (rt þ γmaxatþ1

Q stþ1; atþ1
� �

−Q st ; atð Þ)
was applied to update only the chosen action. This was the only update
used in the standard model to which the FPE model was compared.

In the second stage of valuation processing, participants observe
the counterfactual outcome associated with a trial-specific optimal bet
(3 € for winning trials; 0 € for losing trials). The counterfactual outcome
is associatedwith an improved consequence relative to the experienced
outcome. Hence, for example in state 1, with a bet of 1 € and a winning
outcome, the participant would earn +20 €. On this trial there are two
counterfactual outcomes that produce an improved consequence, sowe
use the best counterfactual alternative. In this case, the counterfactual
outcome is associated with a bet of 3 € producing earnings of +60 €.
We calculate the fictive error signal on a winning trial (referred to as
f+)as the difference between experienced and counterfactual outcome,
which is equal to −40 € for this particular example, and represents a
counterfactual loss. The counterfactual gain is computed in a similar
manner. Again using state 1 as an example, a bet of 2 € on a losing
trial would produce a loss of 20 €, but a bet of 0 is most optimal, and
so the difference is again computed to reveal that the fictive error
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from a losing trial (f−) is +20 €. These fictive error signals are defined
the same as the two fictive error signals, f+ and f−, in Lohrenz et al.
(2007). The f+ and f− were applied to update action-specific values
differently according to:

(1) when the market went up and, if less than the maximum of 3
Euros was invested, participants could have won more if they
had invested more, i.e. they experienced an f+ (a counterfactual
loss/missed opportunity). In this case, f + = (3 − at) ⋅ market
development, where 3 Euros is the maximum amount that
subjects can bet at each trial.

(2) when themarketwent down and, ifmore than theminimumof 0
Euros was invested, participants could have lost less if they had
invested less i.e. they experienced an f − = (at − 3) ⋅ market
development (a counterfactual gain).

Then, the Q value is updated again prior to the next trial, this time
with the FPE to promote the actions which would have invested more
when the market goes up (for all a ≥ at) and the actions which would
have invested less when the market goes down (for all a ≤ at), as
shown in the formulae below:

Q st ; að Þ ¼ Q st ; að Þ þ αFPE f þ γmaxatþ1
Q stþ1; atþ1
� �

−Q st ; að Þ
h i

where αFPE = {α+,α−} and f = {f+, f−}. α+ is the learning rate over
counterfactual loss and α− is the learning rate over counterfactual
gain f−. The introduction of these two additional parameters to the
standard Q-learning model enables the model to update expected
values with counterfactual gains and counterfactual losses differently.
Positive and negative counterfactual information were updated differ-
ently since both behavioral and neuroimaging data suggest that they
might impact decisions and neural activity differently (Chandrasekhar
et al., 2008; Fujiwara et al., 2009; Lohrenz et al., 2007; Zeelenberg and
Pieters, 2007).

After this two-staged belief update, actions are selected stochastical-
ly according to the probabilities determined by the state-action values
through a softmax distribution:

P st ; atð Þ ¼ exp β � Q st ; atð Þð ÞX4
n¼1

exp β � Q st ;nð Þð Þ
:

In total, this model contains 4 free parameters: standard Q learning
rateα, f+learning rateα+, f− learning rateα−, and the inverse temper-
ature parameter β. It nests the standard Q model (α+ = 0 and
α− = 0). The goodness of fit for the FPE model was compared with
that from the standard Q learning model using the pseudo-r2 statistic
from each model's fit to the data.

MR protocol

All MR images were acquired with a 3 T whole-body MR system
(Magnetom TIM Trio, Siemens Healthcare) using a 32-channel
receive-only head coil. Structural MRI was recorded from each partici-
pant using a T1 weighted magnetization-prepared rapid gradient-echo
(MPRAGE) sequence with a voxel resolution of 1 × 1 × 1 mm3, coronal
orientation, phase-encoding in the left–right direction, FoV = 192 ×
256 mm, 240 slices, 1100 ms inversion time, TE = 2.98 ms,
TR = 2300 ms, and 9° flip angle. Functional MR time series were
recorded using a T2* GRAPPA EPI sequence with TR = 2380 ms,
TE = 25 ms, anterior–posterior phase encode, 40 slices acquired in
descending (non-interleaved) axial plane with 2 × 2 × 2 mm3 voxels
(204 × 204 mm FoV; skip factor = .5), with an acquisition time of
approximately 8 min per scanning run.
MR data processing

Structural and functional MR image analyses were conducted in
SPM8 (Wellcome Department of Cognitive Neurology, London, UK).
Anatomical images were segmented and transformed toMontreal Neu-
rological Institute (MNI) standard space, and a group average T1 custom
anatomical template image was generated using DARTEL. Prior to gen-
erating the group template, we conducted a voxel-based morphometry
(VBM) analysis to ensure the absence of gross anatomical differences
associated with the dietary depletion protocol. Results of the VBM
analysis showed no statistically significant morphological differences,
even at a liberal threshold. Functional images were corrected for slice-
timing acquisition offsets, realigned and corrected for the interaction
of motion and distortion using unwarp toolbox, co-registered to
anatomical images and transformed to MNI space using DARTEL, and
finally smoothed with an 8 mm FWHM isotropic Gaussian kernel.

Functional images were analyzed using the general linear
model (GLM) implemented in SPM8. First level analyses included
onset regressors for each stimulus event excluding the anticipation
phase (see section above), and a set of parametric modulators corre-
sponding to trial-specific task outcome variables and computational
model parameters. Trial-specific task outcome variables (and their
corresponding stimulus event) include the choice value (0–3 Euros) of
the investment (choice phase) and the total value of gains/losses over
each round (corresponding to multi-trial feedback event). Model
derived parametric modulators included the time series of Q-values
for the selected action (choice phase), TD (outcome phase), and f+ or
f−, the fictive error signals (counterfactual outcome phase). The fictive
error signal was used as the regressor because it was common to the
computation of each FPE update to selected and unselected actions. As
with the computational model, it was divided into two sets of trials
for FPE+ and FPE− (all trials are accounted for in themodel) although
the FPEs themselves were not used as regressors (because there could
be more than one on each trial corresponding to the number of unse-
lected actions requiring a valuation update). Reward/punishment
value was not modeled as a parametric modulator because the TD
error time series and trial-by-trial reward valueswere strongly correlat-
ed (all rs N .7; ps b .001). The configuration of the first-level GLM
regressors for the standard Q-learning model was identical to that
employed in the FPE model except that winning and losing counterfac-
tual outcome onsets were modeled as a single event category (counter-
factual outcomephase), and parametricmodulators for the trial-by-trial
counterfactual gain and loss values were not included.

All regressors were convolved with a canonical hemodynamic
response function. Prior to model estimation, coincident parametric
modulators were serially orthogonalized as implemented by default in
SPM (i.e., the Q-value regressor was orthogonalized with respect to
the choice value regressor). This was done to prevent the first level
GLM from allowing variance that was common to both regressors to
go undetected. In addition, we included a set of regressors for each
participant to censor EPI images with large, head movement related
spikes in the global mean.

Second level analyses consisted of a one-way analysis of variance
(ANOVA). To control for false positives at the group level, AlphaSim
(Forman et al., 1995) implemented with AFNI (Cox, 1996) was used to
determine two different thresholds to apply to cortical and subcortical
clusters. The simulation for cortical clusters included all brain
voxels (whole-brain correction). The simulation for subcortical clusters
(subcortical volume correction) was performed inside a mask (2870
voxels) of the caudate (head, body, tail), nucleus accumbens, and
putamen. Both simulations used a single-voxel threshold of p b .005
and a smoothness of 8 mm3. Results of the simulation showed that a
minimum cluster size of 156 and 32 contiguous voxels yielded a
corrected p b .05 for cortical and subcortical clusters, respectively.
These empirically derived thresholds are more conservative with
respect to false positive results compared to those recommended by
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Lieberman and Cunningham (2009), which were shown to provide
an appropriate balance between Type I and Type II error rates for
whole-brain corrections. As such, the subcortical correction threshold
was applied to all subcortical clusters even if they were not included
in the simulation mask (e.g., amygdala). The fMRI results from the
standard Q-learning model are not shown. Standardized (MNI) coordi-
nates [x y z] are reportedwith the z-scored peak voxel value and cluster
sizes (n).

Results

Dietary depletion efficacy

Pairwise statistical tests of the difference in targeted amino acid:
LNAA ratio confirmed the expected between group effects of the deple-
tion procedure (Fig. 2, left). The D− group showed significantly
decreased levels of phenylalanine and tyrosine compared to the P and
S− groups. The S− group showed significantly decreased tryptophan
compared to the P andD− groups. These results indicate that the deple-
tion protocol selectively manipulated plasma free concentrations for
either DAor 5HTprecursors, and did not impair the P group. Randomas-
signment to depletion groups did not result in groups composed of par-
ticipantswith significantly different IQ scores (F(2,79) = .3, p = .7453;
F(2,79) = .21, p = .8076), personality traits measured by the TCI
(all Fs b 1.38, all ps N .2589), or pre-existing biases for risk or loss aver-
sion, ps = .9308, .8777, respectively. Importantly, dietary depletion did
not interfere with participants' ability to associate winning and losing
with each specific state. A 3 (group) × 7 (state) factorial ANOVA
showed only a significant main effect of state on ratings of win expec-
tancies, F(6,539) = 88.88, p b .05, and neither a significant effect of
group nor significant group × state interaction. Follow-up comparisons
showed that all three groups rated states 4 and 6 (both winning states)
as winning more frequently than each of the other states, and state 4
was rated higher than state 6, all ps b .05. A separate repeatedmeasures
ANOVA showed that the ratings for each state were stable over the 8
individual measurements (i.e., not significantly different over blocks).

Task performance

The S− and D− groups did not differ significantly in any aspect of
task performance from the P group. Successful learning of the task
was defined as reaching the most lucrative state (state 4) in at least 7
of the last 10 rounds, and investing there at least 2 Euros. A total of 45
Fig. 2.Depletion efficacy andmodel comparison. Left: the bar graph shows the selectivity and effi
the standard model after only a small subset of trials, and continues to outperform the standar
out of 80 participants exploited the state space successfully in
the last 10 rounds: 17 in the P group, 15 in the S− group, and 13 in
the D− group. The proportion of learners did not differ significantly
between groups (χ2(2) = .163, p = .9217). A depletion group ×
learning success ANOVA revealed that learners accumulated significantly
more reward than non-learners (41.9 +/− 7.8 and 14.2 +/− 25.5
Euros, F(1) = 70.3, p b 0.0001) but there was no difference between
depletion groups as the interaction was not significant (F(2) = 1.1,
p = 0.35). In addition, all visits to state 4 by all participants during the
final 10 rounds were characterized by maximal investments (i.e., 3
Euros), suggesting that all participants recognized the value of the state,
and that the difference between learners and non-learners was their
ability to make strategic decisions (i.e., preference to accept the interim
losses) that would grant them access to state 4.

Q-learning models

The model's free parameters were individually fitted to each subject
by maximum likelihood estimation. Given the actual choice by the
subject at each trial, the fitness of themodel ismeasured by the action se-
lection probability predicted by the model, which is called the likelihood
and it's a function of the model parameters (Daw, 2011). Because the
FPE model nests the standard Q model (α+ = 0 and α− = 0), we
can compare their goodness of fit with the likelihood ratio test (LRT).
Pseudo-r2 shows how much better the model captures the behavioral
data than a null model of random choices. Pseudo-r2 is computed as
1− L

R, for each subject, where L is either log data likelihood of the stan-
dard Q-learning model or of the FPE model and R is the log data likeli-
hood under chance. Both models fit the behavioral data significantly
better than chance, p b 0.05 for all 80 subjects (likelihood ratio test).
But, the FPE model fits the behavioral data significantly better than
standard Q model (likelihood ratio test statistic and p value averaged
across subjects: χ2 = 63, p = 2e−14). A similar reduction in −LL
was observed for the FPE model within all three groups independently
as well (Table 1). However, the model fit did not differ among groups
for either the FPE or standard Q-model (FPE model: pDP = 0.79,
pDS = 0.26, pPS = 0.47; Q-learning model: pDP = 0.44, pDS = 0.36,
pPS = 0.13; Wilcoxon test).

The FPE model explained the behavioral data in the initial trials
much better than the standard Q model. Fig. 2 (right) compares the
model performance over consecutive blocks of the task, each composed
of an incremented subset of 30 trials. It shows that the FPE model
was significantly better, ps b .001 (paired t-tests), when considering a
cacy of thedepletion procedure. Right: the FPEmodel explains choice behavior better than
d model when considering larger portions of the data.
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Table 1
Computational model best fitting parameters.

β −LL α α+ α−

Mean (SE) Mean (SE) Mean (SE) Mean (SE) Mean (SE)

FPE-Q S− 7.9071 (.516) 199.3099 (10.717) 0.1947 (.022) 0.0229* (0.007) 0.4726** (0.093)
D− 14.8004 (2.339) 218.3173 (8.706) 0.1072 (0.020) 0.0271* (0.005) 0.2502** (0.079)
PL 10.4962 (3.389) 188.7058 (11.421) 0.1927 (0.028) 0.0178 (0.012) 0.0801 (0.075)
PNL 8.9845 (2.003) 224.1 (10.838) 0.1194 (0.015) 0.0052 (0.003) 0.6575 (0.078)

Q S− 5.5689 (0.059) 226.0131 (14.704) 0.2206 (0.024) – –

D− 9.1697 (2.135) 240.9172 (11.066) 0.1779 (0.019) – –

P 6.4749 (1.59) 248.6354 (12.346) 0.2867 (0.050) – –

Note: * indicates that the 5HT depletion andDAdepletion groupswere significantly different from each other at p b .05, but neitherwas significantly different from the placebo group; and
** indicates that the 5HT depletion and DA depletion groups were significantly different from each other at p b .05, but neither was significantly different from the placebo group. S
− = 5HT depletion; D− = DA depletion; PL = placebo learners; PNL = placebo non-learners.
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small sample of behavior (first 30 trials) and remained better in each
incremented subset of the data.

Learning rates varied depending on the computational model. A one-
way ANOVA with TD learning rate as dependent measure indicated a
significant main effect, F(2,79) = 4.9276, p b .01. Post-hoc comparisons
revealed that the group average learning rate was greater in S− (.1947;
SD = .118) than D− (.1072; SD = .097), although neither was signifi-
cantly different from P (.1338; SD = .089). A paired t-test over the entire
sample of participants showed that the TD learning rate from the
FPE model (.1445; SD = .1062) was significantly reduced compared to
the TD learning rate from the standard (.2321; SD = .1969) model,
t(79) = 3.7005, p b .05. The learning rates associated with both FPE+
(.0233; SD = .0286) and FPE− (.3733; SD = .4159) were significantly
greater than zero over the entire sample of participants, ts(79) = 7.29
and 8.03, ps b .01, respectively. Expected value (Q) was also significantly
different between themodels, t(79) = 4.89, p b .001 (paired t-test),with
Fig. 3. BOLD signal change correlatedwith expected value. Top row: activity in the vmPFC and O
the BOLD signal byQ-values in themidbrain (left) and caudate (right)was significantly differen
of Q-values were significantly different in the placebo group compared to the serotonin depleti
modulatory effect was positive for the placebo group, it was negative for the serotonin depletio
and blue, respectively.
the FPEmodel (.4756,+/− .174) yielding a significantly greater expected
value for the chosen action than the standard model (.3115, +/− .236).

We also conducted an unplanned exploratory analysis based on a sub-
division of the participants in the P group for parameters from the FPE
model. Learners from the P group had a greater learning rate from the
TD error term than non-learners (.1539 +/− .11 vs. .1075 +/− .06),
although this did not reach statistical significance. The behavioral respon-
siveness to counterfactual losses was associated with more optimal
performance. Learners (.0267 +/− .03 vs .0120 +/− .003) showed a
significantly greater learning rate from counterfactual losses (FPE+)
than non-learners, t(16) = 1.83, p = .0425 (one-tailed, unequal vari-
ances). In contrast, non-learners (.7402 +/− .15 vs. .1277 +/− .31)
showed a greater learning rate from counterfactual gains (FPE−) than
learners, t(23) = −7.2, p b .001 (two-tailed, unequal variances). This in-
dicates that learners updated their expected values with counterfactual
losses more so, and with counterfactual gains less so, than non-learners.
FCwas positivelymodulated byQ-values in the placebo group.Middle row:modulation of
t in the placebo group than the dopamine depletion group. Bottom row:modulatory effects
on group in the medial PFC and posterior OFC (left), and the caudate (right). Whereas the
n group. Insets: bar graphs showing the beta values for P, D− and S− groups in green, red
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Neuroimaging results: neural substrates for expected value

The FPE model-based fMRI analyses revealed several significant
correlations among model parameters and BOLD signal changes
that differed according to depletion group. Fig. 3 displays the re-
sults for these effects. Expected value was significantly correlated
with BOLD signal change in the vmPFC as well as subcortical and
midbrain structures. Q-values modulated the vmPFC in the P
group ([6 52–10], z = 3.3, n = 960) and there were significant
effects of depletion on the neural representation of expected
value. The correlation between Q-values and vmPFC activity re-
versed its sign in the S− group compared to the P group in an over-
lapping region of the vmPFC ([−6 56−4], z = 3.8, n = 1958), the
posterior orbitofrontal cortex ([2 22 −24], z = 3.51, n = 180),
Fig. 4.Neural activity for choice, PE and FPE signals. Top row: choice value modulated activity i
(left). The modulation was significantly stronger in the placebo group than the dopamine dep
ventral striatum (shown at p b .05 whole brain FWE corrected) similarly in all three groups (le
cebo and dopamine depletion groups (right). Bottom: the FPETD corresponding to counterfactu
groups. Inset bar plots are as in Fig. 3.
and also the caudate ([−8 8 8], z = 3.19, n = 246). In addition,
expected value was affected by serotonin depletion in the bilateral
orbital gyrus ([−28 38 −14], z = 3.33, n = 287; [24 26 −12],
z = 3.49, n = 302), ventral occipital cortex ([14 −54 −10],
z = 3.06, n = 581) and posterior cingulate ([−8 −46 −6],
z = 3.72, n = 581). Q-values were affected by DA depletion in
the left caudate ([−6 6 4], z = 3.11, n = 222) and bilateral poste-
rior thalamus and substantia nigra ([−10 −22 −4], z = 2.83,
n = 126; [12 −30 −6], z = 2.91, n = 88). The Q-values derived
from the standard Q-learning model failed to predict significant
BOLD signal changes throughout the entire brain. Together, these
results indicate that counterfactual learning signals are incorporat-
ed into a distributed representation of expected value across
cortical and subcortical, as well as neuromodulatory systems.
n the ventral striatum (shown at p b .05 whole brain FWE corrected) in the placebo group
letion group (right). Middle row: reward prediction error (TD) modulated activity in the
ft). The thalamus/caudate and bilateral amygdale were differentially modulated in the pla-
al losses negativelymodulated neural activity in the ventral striatum similarly for all three
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Neuroimaging results: other modulations and effects of amino
acid depletion

Fig. 4 displays the results fromothermodel parameters and effects of
depletion on BOLD signal. The nominal choice value (i.e., 0–3 Euros) ro-
bustly modulated activity of the ventral striatum ([10 4 4], z = 7.8,
n = 157) in the P group, as did the TD error term ([−12 2 −12],
z = 11.9, n = 669). Activity in the right ventral striatum ([18 4 −8],
z = 3.35, n = 63)was negativelymodulated by the f+(i.e., missed op-
portunities; counterfactual losses). This effect was present across deple-
tion groups as illustrated by the conjunction analysis in Fig. 4 (bottom).
No regions of the brain were significantly modulated by f− on losing
trials (fictive error from counterfactual gains).

The effect of DA depletion on brain activity in comparison to the
P group is shown in Fig. 4 (right column). The D− group showed less
activity modulation by the nominal choice value in the ventral and
mid-dorsal striatum ([−10 8 2], z = 2.9, n = 46; [12 8 0], z = 3.3,
n = 58), as well as supplementary and primary motor areas. The
P group showed significantly greater modulation by TD error
than theD− group in the left thalamus, slightly posterior to the caudate
([10 0 12], z = 2.8, n = 84), and bilateral amygdalae ([−22−4−14],
z = 2.97, n = 90; [18 0 −16], z = 3.3, n = 54). The TD error derived
from the standard Q-model modulated activity in the same set of re-
gions; however, there were no significant group differences for any
voxel. Also, no significant differences were observed between the P
and S− groups formodulatory effects of choice value in the ventral stri-
atum or ventral PFC, although the right DLPFC ([46 42 34]; z = 4.4,
n = 1200) and anterior cingulate cortex ([2 26 32], z = 2.8,
n = 828) showed stronger modulation for P group than S− . There
were no other differences between the depletion and placebo groups.
Fig. 5. Expected value and counterfactual losses in successful learning. Top: learners (n = 17) sh
not. Thebar plot inset shows the group averaged beta values taken from thepeak voxel (MNI [0,
region at the top of Fig. 3 for expected value in the P group only. Bottom: learners and non-lear
and posterior OFC. The learner groups demonstrated a negative modulation in both regions, an
The exploratory subdivision of the P group into learners and non-
learners (see behavioral results above) also yielded interesting effects
in the fMRI data that lend themselves to further interpretation of the
neural mechanism of valuation processing with counterfactual learning
signals. Since only the P group demonstrated a significant correlation
with expected value in their fMRI data from our planned analyses, we
only examined these participants for this analysis of sub-groups.
Whereas learners from the P group showed a statistically significant
correlation with Q-values in the vmPFC ([0 50 −8], z = 2.85,
n = 210), non-learners showed a very weak representation of expect-
ed value at the time of choice indicated by a non-significant correlation
with Q-values (Fig. 5). In addition, the neural response to the f+ was
significantly different between the learners and non-learners in the P
group. A region of the right ventral striatum ([8 −4 −6], z = 3.8,
n = 171) and medial OFC ([2 26 −16], z = 3.3, n = 171) was nega-
tively modulated by f+ for counterfactual losses in the learners, but
positively modulated in the non-learners. Finally, non-learners showed
a stronger correlation with the TD error signal (not shown in Fig. 5) in
the OFC ([2 48 0], z = 3.4, n = 73).

Discussion

The results of this experiment demonstrate that counterfactual
learning signals improve Q-learning model fit, and this improved
model predicted BOLD signal changes correlated with expected value
and reward PE that were sensitive to dietary manipulations of both
dopaminergic and serotonergic neuromodulators. Expected value com-
puted from the FPEmodel robustlymodulated activity in the vmPFC and
OFC in the P group. On theother hand, expected value from the standard
model failed to predict BOLD signal modulations throughout the brain
owed a significantmodulation in the vmPFC (left)whereas the non-learners (n = 13) did
50,−8]) of the cluster shown in the learners. This cluster overlaps that shown in the circled
ners demonstrated differential modulation by counterfactual losses in the ventral striatum
d the non-learner groups showed a positive modulation.

image of Fig.�5


66 M.J. Tobia et al. / NeuroImage 89 (2014) 57–69
even at a liberal threshold of p b .01 (uncorrected). The standardmodel
also did not show any effect of either depletion group in comparison
with the P group, but the FPE model in conjunction with dietary deple-
tion revealed additional neural structures involved in representing ex-
pected value during choice. Whereas dietary depletion was not better
for task performance, it proved to be a useful tool for functional brain
imaging. As such, taking into account counterfactual outcomes and
incorporating them into a representation of action-specific value
improved the model's ability to identify a potential neural mechanism
of choice behavior that was not revealed by the standard Q-learning
model. In addition, the FPE model showed that learners and non-
learners differentially utilized counterfactual gains and losses, and it
produced differential correlations with expected value and counterfac-
tual losses in the vmPFC and ventral striatum, respectively.
Counterfactual learning signals and expected value

Expectations are derived from experience. The variety of informa-
tion that is incorporatedwhen generating expected values can influence
how other events are subsequently processed. There is accumulating
evidence that humans do indeed incorporate counterfactual conse-
quences into subsequent decisions, and that counterfactual conse-
quences modulate neural activity (Bell, 1982; Boorman et al., 2009;
Brassen et al., 2012; Buchel et al., 2011; Coricelli et al., 2005; Li and
Daw, 2011; Loomes and Sugden, 1982; Nicolle et al., 2011). But none
have incorporated FPE signals into valuation for strategic decisions
that maximize long-term gains despite interim losses for action-
specific valuation. For example, Li and Daw (2011) employed counter-
factual outcomes in their study of value-based choices. They used a
Rescorla–Wagner learning rule to update their model derived estimates
of expected value, which by definition does not take into account future
anticipated rewards. They found that neural activity associated with
prediction errors was more consistent with a policy updating mecha-
nism rather than a counterfactual valuation system. Also, neither
Lohrenz et al. (2007) nor Chiu et al. (2008) included the fictive errors
from counterfactual gains or losses in their Q-learningmodel of expect-
ed value. Instead, these two studies used a separate linear regression
analysis to determine that only fictive errors from counterfactual losses
(f+) predicted a change in subsequent choices.

Lohrenz et al. (2007) have previously demonstrated thatfictive error
signals associated with counterfactual losses explain the amount by
which the immediately next bet is changed, but their study did not ex-
amine how this FPE might contribute to valuation processing. In their
experiment, the f+ was computed as the difference between the
obtained outcome (the factual reward) and the unobtained outcome
(the counterfactual reward), yielding what they refer to as “f+”,
which is the counterfactual loss corresponding to the amount of reward
not obtained due to a non-maximal bet on a winning trial. This f+ is
similar to subjectively experienced regret (as noted in their discussion)
for not having bet more after learning that they could have obtained
more due to the winning outcome of the trial. Thus, the f+ can occur
only on a winning trial. This f+ was used as a predictor variable in a
multiple linear regression analysis to determine if it could predict the
amount bywhich the next bet changed. Indeed, the results of theirmul-
tiple linear regression analysis showed that including this variable as a
predictor yielded a significant positive beta value, indicating that f+
predicted a significant increase in the next bet. Lohrenz et al. also in-
cluded an “f−” in their study, which is a counterfactual gain occurring
only on trials for which there was a losing outcome. They reported
that it did not significantly predict the amount by which subjects
changed their immediately next bet. Thus, their findings were congru-
ent with regret-based theorizing in that a missed opportunity led to
an increasingly risky bet, although they did not collect data concerning
the emotional effect of this missed opportunity to fully state that they
identified a “regret” phenomenon.
While Lohrenz et al. did include a Q-learning model in their experi-
ment, it used a temporal difference (TD) prediction error for the factual
reward only (as noted in theMethod section of their manuscript) and is
therefore the same as the standard model used for comparison in our
experiment. In our computational model, we have taken their fictive
error signals (computed as the difference between the obtained and
unobtained outcomes) and further computed a TD error within amulti-
stage Q-learning computational model of action-specific valuation for
choice. We refer to this as an FPE, and it is the additional computation
of this type of prediction error that takes future anticipated rewards
into account, which was not included in the experiment by Lohrenz
et al., that makes our model unique in its ability to identify whether
FPE signals contribute to valuation, and not only to change in betting
behavior. The fictive error signal is not counted twice, but rather it is
computed and then used for further computation. Only in the second
computation (the FPE formula) does it have an effect on valuation.
Further, our model included an FPE+ (computed using the f+ signal
as in Lohrenz et al.) and an FPE− (computed using the f− signal as in
Lohrenz et al.) as distinguishable types of error signals, just as reported
by Lohrenz et al. However, whereas Lohrenz et al. found that only coun-
terfactual losses (f+) significantly explained the amount of change in
the next bet, our model shows that counterfactual gains (our FPE−)
also significantly contributed to valuation.

In this study, the FPE model nested the standard Q model. If partici-
pants had not incorporated counterfactual information into their valua-
tion processes then learning rates for the two FPE parameters would
have been zero. The FPE model is then reduced to standard Q-learning
and expected values should not differ between the two models. To the
contrary, learning rates for both FPE parameters were significantly
greater than zero, expected values (Q) were significantly different
between the models, and the FPE model explained behavior better,
suggesting that participants utilized counterfactual information for
valuation computations.

A neural representation of expected value during choice behavior is
strongly associated with vmPFC activation in humans. Gläscher et al.
(2009) examined the neural representation of expected value during
action- and stimulus-specific choices using a Q-learning model of
learned expected value. Expected value for both types of choices
was significantly correlated with BOLD signal changes in the vmPFC.
In another study, Jocham et al. (2011) found that a DA antagonist
(Amisulpride) enhanced performance on a value-based decision mak-
ing task, and that learned expected value, which was also computed
from a Q-learning model, modulated activity in the vmPFC. In our
data,we identified a distributed neural system involved in the represen-
tation of expected value that is anchored in the vmPFC, which is consis-
tent with findings noted above.

The depletion protocol allowed localization of dopaminergic and se-
rotonergic processing in relation to expected value during choice, which
expands the representation beyond the previously reported vmPFC. The
difference between P and S− groups in the vmPFC was strongly signif-
icant due to the reversed modulatory effect of Q-values resulting from
5HT depletion (see Fig. 3). This reverse modulation in the PFC is the
same effect of 5HT-depletion reported by Hindi Attar et al. (2012) in a
study of Pavlovian prediction error processing with aversive conse-
quences. Also, Seymour et al. (2012) studied the effects of 5HT depletion
on choice valuation for both overt reward and pain avoidance choices.
Although they did not report the direction of the effect that 5HT deple-
tion had on neural activity, they showed that 5HT depletion altered the
representation of expected value in the vmPFC, as well as the caudate.
As such, our findings are consistent with these previous effects both in
terms of the neural regions affected and the direction of the effect that
5HT depletion has in the PFC.

DA depletion revealedmodulation by expected value in the dopami-
nergic midbrain, in the vicinity of the substantia nigra (SN). The SN
has previously been implicated in novelty and memory processing
(Bunzeck and Duzel, 2006), as well as reward anticipation (Kirsch
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et al., 2003; Morris et al., 2006). While neural activity during the antic-
ipation of a forthcoming reward does not unequivocally indicate in-
volvement in the representation of expected value, it is consistent
with the notion that the SN is involved in predictions of the sort that
may require updating based on prediction errors. As such, it is likely
that the SN plays multiple roles in prediction and reward anticipation,
and our findings suggest that these roles aremediated by dopaminergic
neuromodulation.

The overlapping effect of expected value in the caudate, for which
both depletion groups were significantly different from the P group
(see Fig. 3, middle right and bottom right), suggests a locus of integra-
tion between the DA and 5HT neuromodulatory systems. Other brain
regions that were affected by 5HT depletion did not show an effect of
DA depletion, and vice versa, suggesting that these two systems func-
tion independently for the most part in the representation of expected
value. With this in mind, the fact that this part of the canonical reward
system was affected by depletion of both types of neuromodulator
implies that each influences the processing of these neurons. It cannot
be concluded from this study, however, whether or not these effects
are due to a local depletion within the caudate itself, or to a remote ef-
fect of depletion in neurons that provide input to the caudate. In fact,
it might be that local DA depletion caused one effect, and remote 5HT
depletion of caudate afferents caused the other effect. Further research
is necessary to disentangle how these two systems interact in these
neurons.

This cortico-subcortical system for processing and representing
expected value, including the vmPFC, striatum and dopaminergic mid-
brain, is further substantiated by direct white matter connectivity.
There are DTI connections from regions of the SN to ventral, dorsal
and lateral striatum (Chowdhury et al., 2013), and also the medial PFC
(Menke et al., 2010). The ventral striatum (nucleus accumbens) has
white matter fiber tracts connecting it to the vmPFC, and the integrity
of these white matter fibers predicts delayed reward discounting
(Peper et al., 2013). In addition, Motzkin et al. (2011) reported direct
white matter connections from vmPFC to amygdala, which was in-
volved in reward PE processing. Each of these regions was identified
as playing an important, although different role in acquiring and
representing expected value during choice in the SSIT. These monosyn-
aptic connections suggest that the valuation and value representation
network is a core cognitive behavioral network in the brain.

Participants who successfully exploited the task to maximize long-
term gains demonstrated a different pattern of brain activity compared
to those participants that failed to discover/exploit the task. According
to Q-learning, participants that were able to exploit the task and select
the optimal path (i.e., learners) did so bymaximizing the long-term ex-
pected value of their actions. Their representation of expected valuewas
more strongly influenced by counterfactual losses than in the group of
non-learners. Previously, counterfactual losses (missed opportunities)
have been associated with increased risk taking (Brassen et al., 2012;
Buchel et al., 2011; Lohrenz et al., 2007) possibly due to the aversiveness
of subjectively experiencing regret at the missed opportunity (Coricelli
et al., 2005). In the SSIT, increased risk taking would lead through the
optimal path and hence greater sensitivity to counterfactual losses is
indeed advantageous.

A neural representation of expected value was present in the vmPFC
for the group of participantswho learned and exploited the task (Fig. 5).
In contrast, the expected values of non-learners were more strongly in-
fluenced by counterfactual gains, which may suppress risk taking, and
the activation in the vmPFC at the moment of choice was not present.
Furthermore, the f+ signal was processed differently by learners and
non-learners. As shown in Fig. 5, learners demonstrated a significant
negativemodulation by f+in the ventral striatum,which is contradicto-
ry to the positively modulated response to TD/reward signals. This
negative modulation is, however, consistent with effects reported by
Buchel et al. (2011), as well as Brassen et al. (2012), for which the
magnitude of negative modulation also predicted increased risk taking.
The non-learners demonstrated a significant positive modulation,
which resembles the neural response to the standard TD/reward signal.
This suggests that themismatch between responses to factual and coun-
terfactual consequences in anoverlapping region of the ventral striatum
may be a potential neural mechanism for computing and incorporating
counterfactual learning signals during valuation.

Despite the strong influence of counterfactual gains on expected
value, we did not find neural activity that was significantly modulated
by the f− regressor for the P group. The first level GLMmodeled this re-
gressor as a parametric modulator occurring at themoment of counter-
factual outcome presentation specifically on losing trials. Others have
not temporally dissociated factual and counterfactual outcome events,
and either measure fictive error signals implicitly (Lohrenz et al.,
2007) or explicitly (Li and Daw, 2011) at the moment when the factual
outcome is revealed. It may be that neural activity time-locked to a
different stimulus event (the outcome presentation) may correlate
with f−.

Previous literature concerning the effects of counterfactual conse-
quences on choice behavior has focused on the interaction of cognitive
and emotional effects of counterfactual losses in a variety of experimen-
tal paradigms (Sommer et al., 2009). For example, counterfactual losses
lead to increased risk taking, and are strongly associated with subjec-
tively experienced regret (Camille et al., 2004; Coricelli et al., 2005).
Experiencing regret in the face of a missed opportunity is dependent
on the structural and functional integrity of the ventral PFC (Camille
et al., 2004), and it follows that adjusting behavior in order to strategi-
cally reduce anticipated regret (regret avoidance) involves activation
of the posterior OFC (Coricelli et al., 2005). Moreover, healthy older
adults that fail to adjust their behavior in response tomissed opportuni-
ties report experiencing less (or no) regret, and also show differential
sensitivity in the ventral striatum to missed opportunities compared
to younger participants, or clinically depressed older adults (Brassen
et al., 2012). In contrast, counterfactual gains (f−) are associated with
subjective rejoice or relief, and they bias subsequent behavior toward
more conservative choices. These differences in subjectively experi-
enced emotions and behavioral biases suggest that counterfactual
gains and losses contribute independently to valuation. Indeed, we
found that learning rates associated with FPE+ and FPE− were signif-
icantly different, showing that FPE− had a greater effect on expected
value than FPE+.

The differential effects of counterfactual gains and losses may be
related to the volatility and/or risk inherent to the environment. Coun-
terfactual losses may lead to increased riskiness when volatility is low,
but may not exert an influence on choice when volatility or risk is
high and ambiguous. Counterfactual gains may lead to more conserva-
tive choiceswhen volatility and risk are high or unknown,with relative-
ly small effects when volatility and risk are low and unambiguous
(Fujiwara et al., 2009; Henderson and Norris, 2013). Risk and volatility
were each ambiguous in the SSIT, and the nature of the environment
involved frequent losses. Thismay explainwhy FPE− was a stronger in-
fluence on learning than FPE+ among our participant groups. Impor-
tantly however, the learning rates associated with the counterfactual
learning signals dissociated learners from non-learners, with learners
utilizing counterfactual losses more so than non-learners, who used
counterfactual gains more so than learners. This is consistent with pre-
viously reported effects of missed opportunities and regret-related
choices on subsequent decisions (Brassen et al., 2012; Buchel et al.,
2011; Coricelli et al., 2005; Lohrenz et al., 2007)wheremore optimal de-
cision making was associated with responsiveness to counterfactual
losses specifically.

Differential effects of depletion on behavior and brain activity

Acute amino acid dietary depletion for DA and 5HT did not signifi-
cantly affect any aspect of behavior in comparison to placebo depletion.
Previous experiments report inconsistent effects of dietary depletion on
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cognitive performance. For example, 5HT depletion selectively alters
reward processing in some studies (Rogers et al., 2003; Schweighofer
et al., 2008; Seymour et al., 2012; Tanaka et al., 2007), while others
report that it selectively alters punishment processing (Cools et al.,
2008; Evers et al., 2005; Robinson et al., 2012), and still others report
that serotonergic depletion does not affect reversal learning or set
shifting, and yet leads to enhanced decision making (Talbot et al.,
2006). Similar inconsistencies exist in the literature regarding the
effects of DA depletion for a variety of cognitive tasks (Harmer et al.,
2001; McLean et al., 2004; Nagano-Saito et al., 2008, 2012; Robinson
et al., 2010), although none have thoroughly investigated economic
decision making.

Despite these inconsistent behavioral effects of dietary depletion,
both DA and 5HT depletion reliably reduce dopaminergic (Leyton
et al., 2004; McTavish et al., 1999;Montgomery et al., 2003) and seroto-
nergic (Crockett et al., 2012; Yatham et al., 2001, 2012) neural activities,
respectively. Moreover, depletion alters neural activity even in studies
for which no effects on cognitive performance were observed (Evers
et al., 2005, 2006). Thus, whereas cognitive-behavioral functioning
may be robust to neurotransmitter depletion, neural activity itself
shows greater sensitivity, and this allowed recovery of localized,
neuromodulator-specific differences in BOLD signal changes in this ex-
periment without confounds due to significantly different behavioral
characteristics.

The fMRI analysis based on the FPE model parameters for the P
group revealed a cortico-subcortical brain system that was not found
in the results stemming from the standard model. The TD error term
from the standard model accounted for BOLD signal changes in the
ventral striatum and appeared nearly identical to the TDmodulation ef-
fect from the FPEmodel shown in Fig. 4. Processing of the TD error from
the FPE model was disrupted by DA depletion in the thalamus near the
caudate, aswell as bilateral amygdale. DA-mediated TD prediction error
processing has previously been reported by Pessiglione et al. (2006)
and Schonberg et al. (2010). In addition, DA depletion significantly
disrupted processing of the nominal choice value on each trial. The
effects of 5HT depletion were limited to expected value only. These
selective effects of DA and 5HT depletion demonstrate a considerable
degree of independence between the two neuromodulatory systems
in that manipulating one system does not produce the same effects as
manipulating the other system. But it also implies some possibly
competitive interactions in that the two systems do not appear to
compensate for each other (i.e., 5HT depletion does not produce
hyper-responsive DA activity). This opponency-like interaction is
further evident in the significantly different learning rates for FPE+
and FPE− between the two depletion groups (Table 1). Table 1 shows
that the D− group showed greater sensitivity to counterfactual losses
(significantly greater learning rate for the FPE+ than the S− group),
whereas the S− group showed greater sensitivity to counterfactual
gains, and resembles the differential effects of 5HT and DA on reward
and punishment processing reported previously (Boureau and Dayan,
2010; Cools et al., 2011).

Concluding remarks

The OFC and vmPFC, modulated by Q-values in this study, are often
cited as part of a valuation system, however, they are each recently
acknowledged as important nodes in a long-term memory system for
associative information (Euston et al., 2012; Rushworth et al., 2011).
Also, we observed modulation in the retrosplenial cortex, which is a re-
gion implicated in contextual associative memory processing
(Ranganath and Ritchey, 2012). It may be that valuation, decision-
making and episodic memory systems interact (or share functional anat-
omy), which is consistentwith the type of processing necessary for learn-
ing associations among context, action, events, and consequences in the
SSIT paradigm. As such, seemingly incompatible models of memory and
decision making may be mutually informative in the development of
neurobiologically plausible models of large-scale neurocognitive brain
function.

In summary, the neural systems for choice and valuation with coun-
terfactual learning signals include cortical and subcortical structures
that involve an interaction of DA and 5HT processing. Model compari-
son demonstrated that counterfactual processing occurs during
reward-based action-specific value learning when such information is
available. The depletion procedure proved to be a useful tool for fMRI
research because it was able to identify circumscribed neural tissue
where a particular type of neuromodulator was selectively involved in
processing specific aspects of the task: 5HT is involved in expected
value representation by the vmPFC, OFC, and caudate, and, DA is
involved for expected value representation in the striatum and mid-
brain, and is also important for reward PE processing in the striatum.
These findings show that the effects of counterfactual consequences
on choice can be mediated by a direct effect on action-specific expected
values, and contribute to a growing body of research aimed at dissecting
the neural substrates of reward-based value learning for optimal choice
behavior. Although fictive error signal processing was unimpaired by
depletion, these results demonstrated that FPE signals are an important
component of valuation and reward-based learning in a computational
model, and revealed a possible neural mechanism for incorporating
fictive error signals into a more optimal value representation for fiscal
decision making.
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