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Abstract
Many real-life decisions must be made in the face of risk
that is due to uncertain information about the environ-
ment. Even facing the same environment, different people
might behave differently due to their individual risk pref-
erences. For instance, a risk-seeking gambler may over-
estimate the chance of favorable outcomes or the amount
of money going to win in those cases and therefore
prefers to gamble. In cognitive neuroscience, Bayesian
inference is usually applied to model the objective per-
ception of the unobservable state, under which risk-
neutral decisions are made by solving a partially observ-
able Markov decision process (POMDP). However, the
subjective evaluation of such inferred state information,
which leads to different individual risk preferences, and
the underlying neurobiological process are still poorly
understood. Hence, we derived a risk-sensitive POMDP
method that models human choice behavior and re-
sponse time in a simulated investment task. Our risk-
sensitive POMDP model fits the experimental data con-
siderably better than the risk-neutral model. The model’s
risk-sensitivity parameters explained subjects’ individual
risk preference under state uncertainty at the decision
time. Our results may pave the way for understanding hu-
man risk-sensitive choice under perceptual uncertainty
using a unified quantitative POMDP framework.
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Introduction
Many real-life decisions are made in the twilight of uncer-
tainty, such as whether to invest in a risky asset. At least
two types of uncertainty can impact the economic conse-
quences of a choice and thus result in decision risk (Bach
& Dolan, 2012): first, the uncertain consequences of the de-
cision maker’s choice, and second, the decision maker’s un-
certain knowledge about the state underlying the choice sit-
uation. While the neural mechanisms underlying economic
risk processing are fairly well established (Niv, Edlund, Dayan,
& O’Doherty, 2012), the risk preferences induced by percep-
tual uncertainty are less clear. In this study, we generalized
the recent computational work on risk-sensitive Markov deci-
sion processes (MDPs) (Shen, Tobia, Sommer, & Obermayer,
2014) to the POMDP case and empirically validated this theo-
retical framework as a behavioral model for human response
times (RT) and choices in a novel experiment, in which human

subjects performed a simulated investment game. The behav-
ioral task was designed to flexibly manipulate individual risk
preferences induced by perceptual uncertainty. We identified
subject groups of similar risk-preferences and demonstrated
each group’s belief update about the unobservable states us-
ing the risk-sensitive POMDP model.

Method
Experimental Paradigm: Human Risk-sensitive
Choice under Perceptual Uncertainty
55 participants (32 female, mean age 25.44 ± 4.7 years old)
performed a sequential decision task in which they imagined
themselves as an investor in a simulated stock market. The
market had two unobservable states, a “good” state with a
high investment return and a “bad” state with a low investment
return. The good (bad) state was indicated by the left (right)
motion direction of the random dot kinematogram (RDK) (Brit-
ten, Shadlen, Newsome, & Movshon, 1993) stimulus that con-
sisted of 180 frames with 1/60 seconds per frame. The stim-
ulus switched its direction once within a trial at a random time
point, which induced uncertain economic consequences of
subject’s actions. The perception about motion strength was
induced by the probability that a particular dot would be dis-
placed in the signal direction, which is typically referred to as
coherence. At each frame, the participant chose between two
possible actions, “sell” the stock or “wait”. Selling in a good
state led to a reward of 2.5 units, whereas in a bad state led
to a reward of 1 unit. The wait action allowed to accumulate
information at the expense of a small constant waiting cost
per frame. The episode terminated either immediately after
the subject chose to sell or automatically set to sell at the last
frame if the subjects waited until the end of the episode. As
an optimal strategy, a participant who believed to be in the
good state should sell the stock as quickly as possible. On
the other hand, when the participant believed to be in the bad
state, they could either wait for the market state to switch to the
good state for a larger profit or sell immediately to avoid further
waiting costs. However, the accumulated waiting costs could
be higher than the profit of the good state if the switch hap-
pened too late. The risk in this task arises as a consequence
of the decision under perceptual uncertainty about the unob-
servable market state. Details about the 2 x 2 x 2 factorial
experimental design with the order of stimulus states (good
first , bad first), the coherence of both motion states (high,
low), and the waiting cost (high, low) are shown in Figure 1.
Each participant performed 60 trials under each of the eight



experimental conditions (480 trials in total).

Figure 1: The 2 x 2 x 2 factorial experimental design of the
simulated investment task.

Computational Modeling: Risk-sensitive POMDP

The POMDP representation of the investment game is given
by a tuple (S,A,Ω,T,O,R) with the following components:

• S := {goodpre,badpre,goodpost ,badpost ,sold} is the unob-
servable state space 1

• A := {wait,sell} is the action space

• Ω is a set of observations given by the noisy RDK stimulus

• T : S×A×S→ [0,1] is a state transition function

• O : S×A×Ω→ [0,1] is an observation function

• R : S×A→ R is a reward function

The RDK stimulus represented the noisy observations that
the agent received from the POMDP environment (displayed
in Figure 2). In each trial, the duration of the RDK stimulus
lasted at maximum N=180 time steps (frames).

The resulting belief-state MDP has a belief space B which
is the set of all probability distributions over the state space S.
Bayesian inference is used to update the belief upon receiving
each new observation:

b′(s′) =
P(o|s′,a)∑s∈S P(s′|a,s)b(s)

P(o|a,b)

=
O(s′,a,o)∑s∈S T (s,a,s′)b(s)

P(o|a,b)

(1)

where P(o|a,b) = ∑s′∈S O(s′,a,o)∑s∈S T (s,a,s′)b(s).

1Due to the unique, single state transitioning in each episode, both
the good and the bad state can be formally represented by a pre and
a post state.

Figure 2: Transition dynamics of the unobservable state space
in the experiment for the wait action.

Risk-neutral model A risk-neutral agent aims at maximizing
the expected cumulative reward through a policy π:

JN(π,b) := max
π∈Π

Eπ

[
N

∑
n=0

Rn|b0 = b

]
(2)

The optimal policy π∗ := argmaxπ∈Π JN(π,b) can be ob-
tained using standard value iteration in the belief space B with
an appropriate approximation method (e.g. Spaan, 2012).

Risk-sensitive model To incorperate risk-sensitivity into the
model, the agent is endowed with an exponential utility func-
tion, given by

U(x) =

{
1
λ
(1− e−λx), λ 6= 0

x, else
(3)

where λ controls the risk-preferences. When λ < 0 (λ > 0),
U is convex (concave) and therefore the agent will be risk-
seeking (risk-averse). For risk-sensitive POMDPs, the state
space is expanded by the agent’s wealth w ∈W (i.e. its cu-
mulative reward at any given time) (Bäuerle & Rieder, 2017;
Marecki & Varakantham, 2010). The objective of the risk-
sensitive agent is then given by:

JN(π,b) := max
π∈Π

Eπ

[
U(w0 +

N

∑
n=0

Rn|b0 = b)

]
(4)

Value iteration can be performed by recursively calculating
V n

U (b,w) starting at the final decision epoch N where it must
hold that:

V N
U (b,w) =U(w)

=U((N−1)c+ rs)
(5)

for all b∈ B. Here, rs ∈ {1,2.5} is short-hand for the reward
for selling in state s and c denotes the waiting costs.



Accordingly, the optimal state-action values can be calcu-
lated via backward recursion by:

V n
U (b,w) = max

a∈A

{
∑

o∈Ω

P(o|b,a)V n+1
U (b′,w+R(b,a))

}
= max

{
∑

o∈Ω

P(o|b,a = wait)V n+1
U (b′,nc),

∑
s∈S

b(s)U((n−1)c+ rs)
} (6)

where b′ is the updated belief and R(b,a) is the expected
reward under action a with respect to the current belief b.
An approximation to the optimal value function was obtained
using grid-based approximation with nearest-neighbor inter-
polation (Hauskrecht, 2000). Exploratory analysis of a risk-
sensitive agent’s choice behavior showed that negative values
of λ corresponded to quicker responses at the cost of higher
state uncertainty at decision time, whereas positive values of
λ induced longer evidence accumulation and thus longer RTs
on average.

Model-based Analysis

Both risk-neutral and risk-sensitive models are fitted to the
subjects’ behavioral RT. We identified subject groups with sim-
ilar risk-preferences by applying k-Means clustering to their
RT quantiles. Goodness of fit was determined by measuring
similarity between the humans’ and the model agent’s RT dis-
tributions based on the Euclidean distance between the quan-
tiles. For sets of candidate values, λ ∈ Λ,cohlow,cohhigh ∈C
we fit parameters by the following procedure:

Let Θ := Λ×C×C denote the parameter space. Further-
more qlow and qhigh denote the vectorial data representation
of the RT distribution quantiles corresponding to the experi-
mental conditions with low and high coherence, respectively.
The optimal set of parameters, θ∗ is then given by 2:

θ
∗ = argmin

θ∈Θ

∥∥∥qlow
sub jects−qlow

agent(λ,cohlow)

∥∥∥+∥∥∥qhigh
sub jects−qhigh

agent(λ,cohhigh)

∥∥∥ (7)

The analysis was performed on both, group level and for
individual subjects 3.

Results
The group-wise cumulative RT distributions are shown in
Figure 3 for each experimental condition. The clearly dis-
tinct group patterns supported the assumption that the risk-
sensitivity towards perceptual uncertainty guides subjects’

2Coherence was modeled by the degree of overlap of two Gaus-
sian observation distributions. The means were placed symmetrically
around zero and overlap was controlled by the standard deviation,
which was fitted to the data.

3For calculating the agent’s RTs, we used a reduced waiting cost
of c = 0.009 in the high-cost conditions, because the belief-action
value under Bayes-optimality at the first decision epoch was always
higher for the sell action

choice behavior. For example, Group 1 prefers to accumu-
late a lot of evidence in order to reduce perceptual uncertainty
at decision time. Conversely, Group 2 sells very quickly on
average, thus avoiding waiting costs at the expense of higher
perceptual uncertainty.

Figure 3: Group RT distributions for human subjects. The
groups were determined by k-Means clustering.

The group-wise goodness-of-fit and best-fitting risk-
sensitivity parameters are shown in Table 1. The overall lower
values of the fitting criterion from the risk-sensitive model
showed that it explained the behavioral data better than the
risk-neutral model. This was particularly evident for groups
favoring rather extreme choice strategies, either risk-averse
(e.g., Group 1) or risk-seeking (e.g., Group 2). However, sub-
jects’ choice response time distribution depended on the com-
bined manipulation of waiting cost, coherence level and state
orders. The simuluated response time were parameterized by
both the risk-sensitive parameter λ and the Gaussian coher-
ence paramter. Therefore, larger (smaller) λ alone does not
necessarily lead to earlier selling (longer waiting). We further
visualized each group’s choice behavior by the fraction of sell-
ing in the good state across all experiemntal conditions. The
corresponding risk-sensitive agents that were fitted to every
group replicated the choice behavior closely (Figure 4).

Subject-wise fitting scores under the risk-neutral vs. the



risk-sensitive models are visualized in Figure 5. The results
from the individual analysis further demonstrated that the risk-
sensitive model fitted the experimental data considerably bet-
ter than the risk-neutral model.

Group Size λ RT quantile distance
1 12 2.0 (0) 452.5 (515.2)
2 9 -1.0 (0) 401.9 (635.3)
3 12 0.1 (0) 484.7 (495.8)
4 7 -0.3 (0) 292.0 (304.0)
5 15 -0.5 (0) 400.8 (450.1)

Table 1: The best-fitting λ and corresponding fitting criterion of
the risk-sensitive vs. risk-neutral (in brackets) model by each
RT group.

Figure 4: Fraction of selling in the good state, aggregated
across all trials. Bar and error bar represent the mean and
the standard deviation of the group members, respectively.

Figure 5: Distribution of subject-wise Euclidean distances of
RT quantiles for risk-neutral and risk-sensitive agents.

Discussions
Our results provide evidence favoring the risk-sensitive
POMDPs for modeling choice behavior compared to the risk-
neutral model. Risk-preferences under perceptual uncertainty

are reflected in the parameters of the best-fitting risk-sensitive
POMDP model. Individual risk-preferences were identified by
their differential RT distributions. The RT distribution of the
risk-sensitive model agents with varying parameters resem-
bled the subjects’ choice behavior, especially with respect to
the policies of waiting long (accumulating evidence) or sell-
ing quickly (avoiding waiting costs). In summary, our study
demonstrated that the concepts derived for risk-sensitive plan-
ning under economic uncertainty can be carried over to per-
ceptual uncertainty at the within-trial level for describing be-
havioral RT. A follow-up study at the between-trial level with
both behavioral and neuroimaging experiments could yield
further insights into whether the neural correlates of risk-
sensitive reinforcement learning (Niv et al., 2012; Shen et al.,
2014) are also involved in the acquisition of risk-sensitive de-
cision policies under perceptual uncertainty.
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Bäuerle, N., & Rieder, U. (2017). Partially Observable Risk-
Sensitive Markov Decision Processes. Mathematics of
Operations Research, 42(4), 1180–1196.

Hauskrecht, M. (2000). Value-Function Approximations for
Partially Observable Markov Decision Processes. Jour-
nal of Artificial Intelligence Research, 13, 33–94.

Marecki, J., & Varakantham, P. (2010). Risk-Sensitive Plan-
ning in Partially Observable Environments. In Proc. of
AAMAS, 1357–1368.

Niv, Y., Edlund, J. A., Dayan, P., & O’Doherty, J. P.
(2012). Neural Prediction Errors Reveal a Risk-Sensitive
Reinforcement-Learning Process in the Human Brain.
Journal of Neuroscience, 32(2), 551–562.

Shen, Y., Tobia, M. J., Sommer, T., & Obermayer, K. (2014).
Risk-sensitive Reinforcement Learning. Neural Compu-
tation, 26(7), 1298–1328.

Spaan, M. T. J. (2012). Partially Observable Markov Decision
Processes. In M. Wiering & M. van Otterlo (Eds.), Re-
inforcement Learning: State-of-the-Art (pp. 387–414).
Berlin, Heidelberg: Springer Berlin Heidelberg.


